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ABSTRACT: Prediction of reaction yield as the most im-
portant characteristic process of a slurry polymerization
industrial process of propylene has been carried out.
Stacked neural network as an effective method for model-
ing of inherently complex and nonlinear systems–espe-
cially a system with a limited number of experimental
data points–was chosen for yield prediction. Also, effect of
operational parameters on propylene polymerization yield
was modeled by the use of this method. The catalyst sys-
tem was Mg(OEt)2/DIBP/TiCl4/PTES/AlEt3, where

Mg(OEt)2, DIBP (diisobutyl phthalate), TiCl4, PTES (phenyl
triethoxy silane), and triethyl aluminum (AlEt3) (TEAl)
were employed as support, internal electron donor (ID),
catalyst precursor, external electron donor (ED), and co-
catalyst, respectively. The experimental results confirmed
the validity of the proposed model. VC 2009 Wiley Periodicals,
Inc. J Appl Polym Sci 116: 1237–1246, 2010
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INTRODUCTION

Ziegler-Natta catalysts are the most common and
important commercial catalyst systems to produce
millions of tons of polyethylene and polypropylene
to fulfill strong worldwide demand. A considerable
proportion of this demand is met by large scale,
slurry and gas phase processes. Supported catalysts
enable us to use high activity polymerization sys-
tems with negligible reactor fouling, and at the
same time, producing polymer powders of good
morphology and high bulk density.

To obtain a better polymerization behavior, tradi-
tional supports such as MgO,1 Mg(OH)2,

2 MgCl2,
3

and silica4 have been used; but among them, silica
and MgCl2 have received the most attention and are
being used immensely in olefin polymerization. As
simple silica supported catalysts have not been able
to polymerize polypropylene successfully,5 magne-
sium compounds (especially MgCl2) have been
known to be the most useful supports. But high
hygroscopicity of MgCl2 and high chlorine content
of MgCl2 supported catalysts make its use difficult.
Thus, some studies have been conducted to improve
catalyst preparation methods by use of the Magne-

sium Alkoxides to obtain good polymerization
behaviors. As a result, the chemical reaction method
for preparation of such catalysts using a Mg(OEt)2/
ID/TEAl/TiCl4/ED system have appeared to result
in the most favorable polymerization behavior.6–9

There are only a few records reporting a compre-
hensive review on the effect of operational parame-
ters on polymerization of propylene to get suitable
productivity and isotacticity index (I.I.%);10–13 there-
fore, a thorough study on the effect of operational
parameters on the mentioned systems would be use-
ful. According to the fact that process modeling is
proved to be successful in many facets of process en-
gineering and it can be utilized to reach predictive
purposes, modeling of such a system would be valu-
able. As industrial processes behave nonlinearly in
some cases, developing of an accurate model for
control, optimization, and simulation would be a dif-
ficult task. Artificial neural network (ANN) is
known as one of effective methods, capable of mod-
eling of inherent complex and nonlinear systems.14

Recently, in some papers focused on the polymer-
ization process, the effects of the variables and oper-
ating conditions on the final polymer properties and
productivity have been investigated with assistance
of artificial intelligence.15–19

Among the ANN techniques, stack generalization
is a technique for combining neural networks in
order to provide a practical model for prediction. To
improve the accuracy of model, especially when lim-
ited numbers of experimental data points are
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available, stacked neural network (SNN) is recom-
mended.20 As we knew from literature survey, de-
spite its unique characteristics, there is no report
within the literature utilizing SNN technique in
polymerization processes.

In this article, Mg(OEt)2 supported catalyst was
prepared and characterized. A comprehensive study
on the effect of operational parameters on the poly-
merization behavior of the synthesized catalyst has
been implemented. Finally, the effect of the process
variables on the polymerization yield was investi-
gated through the proposed SNN model.

EXPERIMENTAL SECTION

Chemicals

Magnesium ethoxide and phenyl triethoxy silane
were purchased from Fluka (Switzerland). DIBP,
TiCl4, and toluene (extra pure grade) were pur-
chased from Merck (Germany). A 1 M solution of
TEAl was supplied from Schering (Germany). Pro-
pylene and nitrogen (99.999% purity) were prepared
from Arak Petrochemical (Iran). Normal heptane
and n-hexane ([H2O] < 3 ppm) were supplied from
Shazand Refinery (Iran).

Preparation of catalyst

Mg(OEt)2 (10 g) and TiCl4 (20 mL) were added to
80 mL dried toluene in a 200 mL three-necked flask
vigorously stirring with a magnetic stirrer under
nitrogen pressure. Upon reaching 90�C, 2.7 mL
DIBP was added as internal donor (ID). The reac-
tion was continued for 2 h at 115�C. After decanta-
tion, product of the reaction was washed at 40�C
two times and each time with 100 mL dried tolu-
ene. The same process was carried out at 115�C for
another 2 h and treated in 80 mL toluene with 20
mL of excess amount of TiCl4. On completion of
the process, the catalyst was washed 10 times with
n-hexane at 80�C and dried under nitrogen pres-
sure. Finally, the mixture of 2 g of washed catalyst
and 40 mL of dried n-heptane was located under
the nitrogen purge to be injected into polymeriza-
tion reactor.

Typical polymerization procedure

Polymerization was conducted in a 1.6 L Buchi type
reactor equipped with a mechanical stirrer (adjusted
to 500 rpm during the polymerization).
After removing all the moisture, air, and impur-

ities by purging with nitrogen, the reactor was
charged with 800 mL n-heptane. Co-catalyst was
injected into the reactor 5 min after the injection of
external donor (ED) solution. Then, catalyst suspen-
sion was injected into the reactor and stayed in con-
tact with mixture of co-catalyst and ED solutions.
The preparation of co-catalyst and ED was done by
addition of 10 mL of 1 M solution TEAl to 63.3 mL
and 24 mL of PTES to 76 mL of n-heptane, respec-
tively. Finally, solvent was saturated with monomer
and warmed upto the desired reaction temperature
and supplied with continuous pressure at the ambi-
ent polymerization pressure. The monomer line was
always set to 10 bar and could be regulated to
another pressure level for a different polymerization
condition. At the end of polymerization process,
produced polymer was weighted after being filtered
and dried in vacuum at 70�C.

Catalyst and polymer characterization

Ti and Mg content of the catalyst were determined
by atomic adsorption spectrophotometer (Shimadzu
6800). 100–150 mg of the catalyst dissolved in 10 mL
of 0.2N sulfuric acid and diluted to 100 mL with dis-
tilled water. Chlorine content was measured by Vol-
hard’s method.21,22 Chemical microstructure of the
catalyst was obtained by FTIR with an 8 : 1 (w : w)
ratio mixture of catalyst to potassium bromide using

Figure 1 FTIR spectra of: (a) Mg(OEt)2, (b) DIBP, (c) Cat-
alyst 1, and (d) Catalyst 2. [Color figure can be viewed in
the online issue, which is available at www.interscience.
wiley.com.]

TABLE I
Catalyst Elemental Analysis Results

Element Wt % in Catalyst 1 Wt % in Catalyst 2

Ti 2.75 2.6
Mg 22.01 21.8
Cl 58.01 55.36
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Test Scan Series 8000 Shimadzu. Specific surface
area of the catalyst was measured via BET method.
Extraction of precipitated isotactic polymer in boil-
ing normal heptane was used to calculate percentage
of isospecifity of the polymer as discussed in the
literature.23

Elemental analysis

Table I tabulates elemental analysis for a sample of
the synthesized catalysts (Catalyst 1). The results
were compared with an industrial Mg(OEt)2 sup-
ported catalyst donated by Arak Petrochemical. (Cat-
alyst 2). The results obtained from the synthesized
catalysts are comparable with the industrial one.

FTIR analysis

FTIR analysis enables us to recognize catalyst chemi-
cal structure. Figure 1 shows the resultant spectra.
As it is shown in both catalysts spectrum [Fig.
1(c,d)], the peak at 1420 cm�1, appearing to corre-
spond to Mg(OEt)2, has shifted to 1636 cm�1, corre-
sponding absorbance band for MgCl2.

13 It means
that due to the reaction between ethoxide groups
and TiCl4, a great amount of ethoxide groups have
been changed to MgCl2. The weak peaks in the
range 1300–1500 cm�1 are probably representative of
different types of Mg(OEt)2 or TiCl4-n(OEt)n and the
evidence for attendance of residual ethoxide groups
in the form of Mg(OEt)2 and TiCl4-n(OEt)n. The spec-
trum for DIBP shows a strong band at 2500 cm�1,
which is shifted to 2250 cm�1 in catalysts spectra.24

Specific surface area, porosity, density

Specific surface area of the catalyst was obtained
from nitrogen absorption results at different relative
pressure levels. According to the observed isotherms
that are in concurrence with Bruner second type iso-
therms describing a multi-layer absorption behav-
ior,25 the best correlation for the measurement of

these types is BET equation. BET calculation is based
on multi-layer physisorption, whereas Longmuir cal-
culation is based on the simple layer physical absorp-
tion. Table II compares the BET and Longmuir spe-
cific surface areas of Catalyst 1 and Catalyst 2. As
it is obvious, magnificent increase in specific surface
area was obtained in comparison with industrial
catalyst and data from other investigations on
fourth generation Ziegler-Natta catalyst in the
literature.26

In majority of the studies, pore size distribution of
the catalyst particles is obtained by considering the
desorption branch of nitrogen adsorption isotherms.
Here, this quantity was measured using BJH method.
Table III shows average pore volume and average
pore diameter for the Catalyst 1 and Catalyst 2.
Table IV shows the porosity and bulk density

results for the catalysts. It is apparent that the poros-
ity of the Catalyst 2 is less than that of Catalyst 1.

Effect of operational parameters on propylene
polymerization

In this section the effect of operational parameters
on propylene polymerization using Catalyst 1 is
investigated as follows:

Effect of co-catalyst/transition metal molar ratio

As it can be seen in Table V, catalyst activity
increased in terms of the polymerization productiv-
ity until reached a maximum and then fell. It was
found that the addition of Al-alkyl co-catalysts to
the catalyst system and subsequently their interac-
tions progressively activated the potential active
sites and increased their number, resulting in
increase of the polymerization productivity.27–29

Also, study of different quantitative methods of

TABLE III
Average Pore Volume and Diameter

Catalytic
system

Average
pore volume

Average
pore diameter

Catalyst 1 0.281 35.98
Catalyst 2 0.225 35.99

TABLE II
BET and Longmuir Specific Surface Area

Catalytic system BET (m2/g) Longmuir (m2/g)

Catalyst 1 270.71 938.20
Catalyst 2 244.81 770.30

TABLE IV
Bulk Density and Porosity

Catalytic system Bulk density (g/cm3) Porosity

Catalyst 1 0.447 0.334
Catalyst 2 0.554 0.405

TABLE V
Effect of Al/Ti Ratio on Propylene Polymerizationa

No. Al/Ti (molar ratio) Yield (Kg PP/(g Ti)ah) I.I.%

1 330 66 98.3
2 440 68 98.1
3 520 70 97.5
4 740 80 97.1
5 850 58 96.8

a Polymerization conditions: [Ti] ¼ 0.052 mmol/lit, P ¼
9 bar, T ¼ 70�C, time ¼ 2 h, agitator speed ¼ 500 rpm
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determination of Tinþ species in the catalyst system
demonstrated that the majority (almost 90%) of ini-
tial Ti ions on the catalyst surface were of type
Ti(IV) reduced to lower valence states such as Ti(III)
and even Ti(II) due to alkylation with co-catalyst
ligands.30–35 Besides, industrial and scientific,
records show that polymerization of propylene at
the temperatures near 70�C with catalyst systems is
similar to our system, a considerable amount of
active sites are formed by species of oxidation states
higher than Ti(II). In fact, for similar catalytic sys-
tems, the Ti(II) species are inactive to polymerize
propylene.31,36–38

Therefore, considering the fact that reduction
processes are fostered due to increase of Al-alkyl
concentration, formed active sites may suffer from
deactivation caused by over-reduction of titanium
species form higher oxidation states like Ti(IV) and
Ti(III) to inactive Ti(II) species during both catalyst/
co-catalyst pretreatment and polymerization pro-
cess.35,39 Therefore, falling of catalyst activity as a
result of this reality is expectable.

A slight decrease of I.I.% after use of higher con-
centrations of co-catalyst might be ascribed by
removal/extraction of ID due to complexation with
co-catalyst species, as it is reported in the litera-
ture.39 Owing to the fact that the interaction between
ID and Ti species is not very strong,27,40 addition of
higher amounts of co-catalyst might cause the
extraction of a large amount of IDs by formation of
complexes with TEAl, and finally resulting trans-
form of isospecific Ti-ID complexes to specific

uncomplexed Ti species.39 This is likely the most
reasonable theory to explain the effect of co-catalyst
on I.I.% of the final polymer.

Effect of co-catalyst/ED ratio

It is well known that use of a Lewis bases as ED
remarkably affects the stereospecifity, polymeriza-
tion kinetics and the activity of Ziegler-Natta
catalysts.41,42

It is found that addition of the ED to the catalyst
systems improves the stereospecifity of the active
sites by reversible complexation of it to the coordina-
tively unsaturated active sites.43

According to Kakugu et al.,44 there are two kinds
of active site structures in the first steps of the poly-
merization (a specific active site, which is labeled by
structure 1 in Figure 2 and low-isospecific active site
as labeled by structure 3).
They suggest that addition of ED improves the

isospecifity of the catalyst due to transformation of a
specific active centers of structure 1 to high isotactic
active sites of structure 2, resulting in a remarkable
increase in I.I.% of the final polymer. However,
simultaneously transformation of structure 3 as a
result of use of high amounts of ED may cause an
activity decrease due to generation of inactive sites
after transformation of low isotactic active sites to
inactive ones under structure 4.
Table VI shows the obtained results from poly-

merization of the synthesized catalyst using different

Figure 2 Models for the active centers on supported Ti catalyst and the effect of an ED; (h) Cl vacancy.44

TABLE VI
Effect of External Electron Donor on Propylene

Polymerization

No. Al/Si (molar ratio) Yield (Kg PP/(g Ti)ah) I.I.%

1 20 66.8 96.5
2 16 80 97.1
3 10 70 97.8
4 5 64 98.6

a Polymerization conditions: [Ti] ¼ 0.052 mmol/lit, P ¼
9 bar, T ¼ 70�C, time ¼ 2 h, Al/Ti ¼ 740, agitator speed ¼
500 rpm

TABLE VII
Effect of Monomer Pressure on Propylene

Polymerizationa

No. Pressure (bar) Yield (Kg PP/(g Ti)ah) I.I.%

1 6 32 98.1
2 7 60.8 97.5
3 8 70 97.3
4 9 80 97.1
5 10 97 97

a Polymerization conditions: [Ti] ¼ 0.052 mmol/lit, T ¼
70�C, time ¼ 2 h, Al/Ti ¼ 740, Al/Si ¼ 16, agitator speed
¼ 500 rpm
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amounts of ED in terms of Al/Si molar ratio. As it is
obvious, the productivity of the catalyst increased to
a maximum point and then fell because of an
increase in number of inactive sites in higher
amounts of ED. But I.I.% of product rose monotoni-
cally due to increase in ED amount. Lee et al.27 have
reported similar results similar to the observed
trend.

Effect of monomer pressure

By choosing optimum amounts of ED and co-cata-
lyst leading to the most polymerization productivity
obtained in previous steps of experiments, and 70�C
as the polymerization temperature, a slightly linear
dependency of productivity to different pressures in
the range 6–10 bar was being observed, as shown in
Table VII. This was due to the fact that higher pres-
sure and concentration of monomer causes catalyst
particles to break (especially in initial steps of reac-
tion) and to locate new created active centers in the
polymerization media.45,46

Effect of temperature

Polymerization was carried out at different tempera-
tures in the range 55–80�C. According to Table VIII,
due to increase in temperature, activity rose to a
maximum point and then began to fall. At high tem-
peratures, diffusion is the determining step of poly-
merization rate. On the other hand, gas solubility in
liquid at high temperatures decreases because of the

increase of molecular kinetic energy of gas.44 Also,
that result might be ascribed to naturally irreversible
destruction reaction of active centers takes place at
high temperatures.45

Also, according to Table VIII a considerable
decline of I.I.% for the final polymer took place with
increasing the polymerization temperature. Similar
results are observed in several reports.27,37,47

Effect of reaction time

Productivity rose with extending the polymerization
time. Most of the polymer production took place at
initial steps of reaction and at final step the rate fell
noticeably according to Table IX.

Effect of hydrogen

In this section, the effect of addition of hydrogen
during the polymerization process was studied.
Hydrogen was used as a chain transfer unit to con-
trol the molecular weight of the polymer for the
commercial production of polyolefins, such as PP
and PE using Ziegler-Natta catalysts. In spite of the
fact that the mechanism of the activation behavior
and chain transfer reaction remains obscure,

TABLE VIII
Effect of Temperature on Propylene Polymerizationa

No. Temperature (�C) Yield (Kg PP/(g Ti)ah) I.I.%

1 55 72 98.6
2 60 73.6 98.2
3 65 75.6 97.7
4 70 80 97.1
5 75 64 95.5
6 80 50 94.2

a Polymerization conditions: [Ti] ¼ 0.052 mmol/lit, P ¼
9 bar, time ¼ 2 h, Al/Ti ¼ 740, Al/Si ¼ 16, agitator speed
¼ 500 rpm

TABLE IX
Effect of Time on Propylene Polymerizationa

No. Time (h) Yield (Kg PP/(g Ti)ah)

1 1 57.2
2 2 80
3 3 107.2
4 4 118
5 5 136

a Polymerization conditions: [Ti] ¼ 0.052 mmol/lit, P ¼
9 bar, T ¼ 70�C, Al/Ti ¼ 740, Al/Si ¼ 16, agitator speed
¼ 500 rpm

TABLE X
Effect of Hydrogen on Propylene Polymerization

No. H2 (cm
3) Yield (Kg PP/(g Ti)ah) I.I.%

1 0 80 97.1
2 50 120 97.0
3 100 136 96.1
4 150 148 95.8
5 200 168 95.1

a Polymerization conditions: [Ti] ¼ 0.052 mmol/lit, P ¼
9 bar, T ¼ 70�C, time ¼ 2 h, Al/Ti ¼ 740, Al/Si ¼ 16, agi-
tator speed ¼ 500 rpm

Figure 3 Schematic architecture of an ANN. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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majority of the studies introduce hydrogen as an
activator, increasing polymerization rate and also
controlling MW of the polymer. This reality emerges
from the theory, in which activating effect of
hydrogen can likely be ascribed to regeneration of
active species following chain transfer with hydro-
gen at ‘‘dormant’’ 2, 1-inserted sites.48–52 However,
some studies show the detrimental effects of hydro-
gen for the rate of polymerization.53 As monomer
solubility in the polymer particle enhances as a
result of introduction of hydrogen to the
polymerization media, the rate of polymerization of
propylene increases in the cases hydrogen as a chain
transfer agent is used.54 Also, it is demonstrated that
hydrogen gas can be used for the purpose of
controlling not only molecular weight but the
molecular weight distribution of the polymer. The
latter directly depends on the distribution of active
species with different valence states on the catalyst
surface. On the ground that hydrogen produces a
variety of valence states for Ti on the catalyst surface
due to continuous chain transfer reactions, an
obvious change in polymerization rate in initial and
declining periods of polymerization process
occurs.55,56

According to Table X, addition of higher amounts
of hydrogen resulted in increased activity of this cat-
alytic system. In addition, it shows a sensible
decrease in I.I.% of polymer in presence of higher
amounts of hydrogen.

THEORETICAL SECTION

Artificial neural network

ANN is a computer based algorithm inspired by
actual neurological system. It is made of intercon-
nected elements called nodes or artificial neurons,
which are a model of biological neurons. Depending
on their application, many types of ANN architec-
tures have been developed, such as, Kohonen, feed-
forward, radial basis for applications, such as, self
organizing map, pattern recognition, and function
approximation.57,58 It has been proven mathemati-
cally that feed-forward structure is a universal
approximator.59

A simple Feed-forward ANN has three layers of
neurons. The first layer is called input layer, which
receives information from outside of the network.
The second layer, where most of the calculation hap-
pens is known as hidden layer. It may have more
than one layer depending on system complexity.
Being hidden for user, the process performed in the
hidden layer is known as black box. The last layer is
called output layer, which receives processed infor-
mation from network and sends the result to an
external receptor.60 Figure 3 shows a four layer feed-
forward neural network with 2,4,4,1 neurons in
input, hidden, and output layers, respectively.
Each neuron receives information from its inter-

connected neurons by its weight factor and calcu-
lates the output by its transfer function or activation
function (F) as follows:

Out ¼ F
Xn
i¼1

ðxixiÞ þ b

 !
(1)

where xi is input data, xi is weight factor for ith
data, n is number of input data, and b is bias. F
could be hyperbolic tangent, sigmoid, linear, Gaus-
sian function, etc.
To have an ANN capable of producing desired

results, its parameters i.e., xi and b should be deter-
mined to minimize the error between experimental
data and produced data. Thus, learning algorithm is
applied to train ANN. Many learning algorithms
have been developed, such as, Conjugate Gradient,
Levenberg-Marquardt (LM), and Bayesian learning.
Among them, LM algorithm performs faster.61 To
train ANN, dataset is divided in two parts. One of
them is for training the network and the other is for

Figure 4 Schematic architecture of a SNN. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

TABLE XI
Statistical Analysis to Assess the Prediction Performance for level-0 Models

Level-0 model ANN1 ANN2 ANN3 ANN4 ANN5

SSE 0.35252 0.75357 0.97634 0.13566 0.64352
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testing the trained network. The success in making a
robust ANN relies strongly on the choice of the pro-
cess variables as well as dataset used for training.
There are situations during training process, in
which the training error reduces while the testing
error is still rather high. This is called overfitting. To
avoid overfitting, two methods have been suggested;
one is regularization and the other is early stopping.
The latter is used in this study. In this method,
another dataset is created besides training and test-
ing datasets called validation dataset.62 Training pro-
cess will stop if validation error increases.

Modeling a system with ANN does not always
guarantee the perfect prediction of the system. This
could be due to trapping learning algorithm in local
minima, design of neural network architecture or
lack of enough experimental data. Thus, it built up
the idea of combining neural networks and stack
generalization.

Stacked neural network (SNN)

Stack generalization is a technique for combining
neural networks in order to provide a practical
model for prediction. To improve the accuracy of
model, when limited numbers of experimental data
points in training dataset are available, SNN is rec-
ommended.20 In this method, several types of ANN
models are combined in order to improve model
performance. Figure 4 shows a simple architecture
of SNN.

ANN models developed from original dataset are
called level-0 models. For a brief overview of this
technique, suppose that there are two level-0 mod-
els. Original datasets are divided in two subsets.
Both level-0 models are designed, trained with first
subset and tested by the other one so that the perfect
architecture with minimum error between desired
output and calculated output is developed. The out-
put of these level-0 models along with the original
output data forms a new dataset. This dataset is
then used for modeling of higher level of the stacked
structure i.e. level-1 model.63

There are several approaches to develop a level-1
model. A simple approach is to take equal weight
factor for each individual level-0 model.64 Second
way is to combine weighted output of each individ-
ual level-0 model presented by the following
equation:

TABLE XII
Statistical Analysis to Assess the Prediction Performance

for Level-1 Model

Method Average Weighted average ANN

SSE 0.57232 0.14692 0.00923

Figure 5 Prediction of the effect of Al/Ti variation on
yield by SNN and its comparison with the experimental
data. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 6 Prediction of the effect of ED variation on yield
by SNN and its comparison with the experimental data.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 7 Prediction of the effect of H2 variation on yield
by SNN and its comparison with the experimental data.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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YðXÞ ¼
Xn
i¼1

ðxiyiðXÞÞ (2)

where Y is output of SNN, X is vector of ANN input
data, n is number of ANN models, and xi is weight
factor for combining the ith ANN set by principal
component regression (PCR).64 Third approach is
combining the models by using principal component
analysis (PCA), where output from level-0 models
are used as training data to train a new level-1 ANN
model.20

In this article, five ANN models were developed
as level-0 model with different architecture and dif-
ferent subset of experimental data. The experimental
dataset was divided in five different subsets. The
first ANN model was designed and trained with
first subset and then tested with the next one. This

procedure was repeated until satisfactory error
between desired output and calculated output was
obtained. In this way, the best architecture for cur-
rent network was found. The same procedure was
used to design other four ANN models. All the net-
works were trained by LM algorithm with early
stopping criteria to avoid overfitting. For each ANN,
80% of subset was used for training and the rest
20% was used for cross validation. Accuracy evalua-
tion of all ANN models was based on sum of square
error (SSE) between desired output and calculated
output. To develop the ANN models, number of
nodes in each hidden layer and number of hidden
layers were varied as well as number of training
and testing data in subsets.
Therefore, five level-0 models were developed. A

couple of them had one hidden layer with three
nodes (ANN1, ANN2). Another couple of them had
one hidden layer with five nodes (ANN3, ANN4)
and the last level-0 model had two hidden layers
with three nodes (ANN5). All level-0 models had
sigmoid, hyperbolic tangent and linear activation
functions in their input, hidden, and linear output
layers, respectively. Output of these level-0 models
along with the original experimental data formed a
new dataset for level-1 model.

RESULTS AND DISCUSSION

Results obtained from yield prediction for all five
level-0 models are presented in Table XI. For level-1
model, three mentioned methods for developing a
SNN model were applied and the results are pre-
sented in Table XII. As shown in Table XII, among
these three methods, error of simple average method
is the highest. Error of weighted average method is
lower than simple average method because each
individual connection weight is considered in this

Figure 10 Evaluation of the SNN model accuracy. [Color
figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

Figure 8 Prediction of the effect of pressure variation on
yield by SNN and its comparison with the experimental
data. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 9 Prediction of the effect of temperature variation
on yield by SNN and its comparison with the experimen-
tal data. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

1244 MONEMIAN ET AL.

Journal of Applied Polymer Science DOI 10.1002/app



approach. ANN model as third approach shows the
best result due to training and learning from level-0
data.

By comparing SSE values in Tables XI and XII, it
is observed that though SSE values for level-0 mod-
els were not satisfactory, SNN provided the best
performance.

A case study on the effect of operational parame-
ters on propylene polymerization was performed.
The performance of SNN model to predict the lim-
ited numbers of experimental data is illustrated in
Figures 5–9. As it is observed, the experimental data
shows pretty good matches with the calculated data
for the all studied operational parameters.

Figure 10 shows yield prediction and its compari-
son with the experimental data. It is shown that for
limited amount of experimental data, SNNs devel-
oped a model considered as an acceptable yield
prediction.

CONCLUSION

A fourth generation Ziegler-Natta catalyst was pre-
pared via chemical reaction method. The effect of
operational parameters on polymerization of the
propylene polymerization was studied. The obtained
results showed that there was an optimum molar ra-
tio of Al/Ti to obtain the highest yield of polymer
i.e., [Al]/[Ti] ¼ 740. The highest activity of the cata-
lyst was obtained at about 70�C. Increasing the
monomer pressure from 6 to 10bar, increased the
productivity of catalyst, monotonically.

Using a SNN modeling approach to predict the
polymerization yield, the effect of operational pa-
rameters on slurry propylene polymerization was
studied. Statistical analysis was performed to judge
on accuracy of the model. Results obtained from this
study showed that the predicted data were matched
well with the experimental data. The proper result
suggests that similar models can be used to estimate
the yield of the complex and nonlinear processes
versus the process variables.
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